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Abstract8

In the domain of Boundary Element Methods, computing the effect of9

a loaded node upon itself entails the solution of singular integrals (bound-10

ary and surface). These singular integrals introduce discontinuities in the11

Boundary Integral Equation. For Steady Incompressible Viscous Flow, ex-12

isting solutions for these integrals are (a) sub-segmentations of the integra-13

tion domain, (b) integration over a lumped non-singular domain. Strategy14

(a) produce high computing expenses. Strategy (b) implies increased in-15

tegration complexity. In facing these limitations, this manuscript presents16

an implementation of the source-node displacement method to compute17

the singular boundary integrals. We then use a direct analytic integra-18

tion for the singular surface integrals. To our knowledge, these methods19

have not been previously used for Fluid Dynamics problems. Our im-20

plementation approximates the boundary and surface singular integrals.21
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The numerical examples computed with these integral results predict lam-22

inar flow around submerged objects. Some differences in the velocity field23

between simulations (BEM-ANSYS) are encountered. In addition, other24

numerical examples present divergence of the boundary results. These25

problems may occur due to unaccounted factors such as incorrect dis-26

cretization of the problem domain or incorrect definition of boundary27

conditions. Even though, the singular integrals can be approximated by28

the means presented and used for simulations.29
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Glossary30

este es el glosario

Ω Boundary value problem’s 2-dimensional domain

that contains part of its border. Domain of the ve-

locity vector field. May be unbounded or bounded.

B Subset of the boundary (border) of Ω. B ⊂ Ω. Sce-

nario for the boundary singular integrals. Thus, it is

the focus of our contribution.

Γ0 External LOOP of B in case Ω being bounded.

Γi Internal LOOP of B.

R Interior of Ω. R = int(Ω) with int(Ω) = Ω−B.

S S ⊂ R. Region in which the non-linear convective

acceleration effects are significant.

xi [m] i-th component of a the Cartesian coordinate of

a point ∈ Ω. i = 1, 2.

ui [m] i-th component of an absolute velocity vector.

i = 1, 2.

vi [m] i-th component of a velocity perturbation vector.

i = 1, 2.

Vi [m] i-th component of the free flow velocity vector.

i = 1, 2.

fi [ N
m2 ] i-th component of a traction vector. i = 1, 2.

~fi [N] i-th component of a body force vector. i = 1, 2.

ρ [ kg
m3 ] Fluid’s density (assumed constant for this

manuscript).

µ [ Ns
m2 ] Fluid’s dynamic viscosity (assumed constant for

this manuscript).

X [m,m] Field element position vector.

ξ [m,m] Source element position vector.
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AIG Analytic integration (source node displacement

method) result of the Green function G in the canon-

ical coordinate system.

oAIG Analytic integration (source node displacement

method) result of the Green function in the x y carte-

sian coordinate system.

M Total number of boundary elements.

L Total number of interior elements.

m Identifier of a boundary element.

l Identifier of an interior element identifier.

n̂ Unitary normal vector of a boundary element.

r [m,m] Position vector of field element X w.r.t source

element ξ.

δ [ ] Kronecker’s delta.

t 1-dimensional array whose entries are the values of

the components (i = 1, 2) of the traction vector at

boundary elements.

v 1-dimensional array whose entries are the values of

the components (i = 1, 2) of the velocity perturba-

tion vector at boundary elements.

to 1-dimensional array whose entries are the values of

the components (i = 1, 2) of the convective traction

vector at boundary elements.

σo 1-dimensional array whose entries are the values of

the components (i = 1, 2) of the convective traction

tensor at interior elements.

G Rectangular matrix whose entries are the results of

the boundary integrals of Green function Gij for each

r.
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F Rectangular matrix whose entries are the results of

the boundary integrals of Green function Fij for each

r.

D Rectangular matrix whose entries are the results of

the surface integrals of Green function
∂Gij

∂xk
for each

r.

Convective

acceleration

[ m
sm ] Change of speed produced by changes in spatial

position. ∂ui

∂xj

Ωr Mesh triangular element.

Ωc Canonical triangular element.

1 Introduction31

In the Boundary Element Method (BEM) formulation, the evaluation of Green32

functions existent in the Boundary Integral Equation (BIE) presents divisions33

by 0 and ln(0) (singularities). These singularities occur when evaluating the34

effects on element/node j due to a load applied on element/node i, when i = j.35

Since these singular integrals are fundamental to BEM, this manuscript presents36

two methods for avoiding/solving the boundary and interior singular integrals37

for steady incompressible viscous flow, and constant (order 0) elements.38

39

Roughly speaking, the implemented method for the boundary singular in-40

tegrals is as follows. (1) A displacement ∆ = (0, D) is introduced to node i of41

a canonical element. (2) We define and evaluate the integrals in the analytic42

domain. (3) The limD → 0 is taken for the symbolic results. (4) The results43

are transformed for the real elements. This method was first introduced for the44

fracture and elasticity fields, we are extending it to fluid dynamics.45

46

For the interior singular integrals, despite the fact that the Green function47

is singular, the integrals are finite and their results exist. Therefore, an analytic48

evaluation of the integrals, without avoiding the singularity, is performed over49
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a canonical 2-D triangular cell and the result is then transformed for the real50

element.51

52

We tested the method for the boundary integrals by steps 1-3. Since there53

were no results found in the literature for the interior singular integrals and the54

fact that they were already evaluated analytically, the results were only tested55

by step 3.56

57

We compared the results for the canonical element to solutions found in lit-58

erature computed with different methods.59

60

1. For 6/8 of the boundary integrals, our solution and the published solutions61

are the same.62

2. For the 2/8 integrals that did not yield the same result, we evaluated63

the analytic integral without avoiding the singularity. The results were64

identical to the ones computed by our solution. It must be mentioned65

that, even though these particular integrals can be computed without66

avoiding the singularity, it isn’t the case for the other integrals and the67

method presented is necessary.68

3. We computed Fluid Dynamics scenarios with our BEM scheme (handling69

the singular cases) and compared them qualitatively to the same scenarios70

computed with ANSYS. We obtain similar results with some differences71

that can be explained by factors such as discretization and fundamental72

differences between the two simulation methods.73

For these reasons, we consider that this manuscript contributes to the avail-74

able tools that BEM practitioners have at their disposal, and opens opportuni-75

ties for handling the aforementioned singularities in higher degree elements and76

other fields.77

78
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1.1 Problem Specification79

We define the Boundary Element Problem (BEP ) as the continuous formulation80

of BEM, which includes the continuous BIE and the definition of a continuous81

domain, for solving a partial differential equation (PDE). For this manuscript,82

the PDE is the Navier-stokes equation for 2-dimensional Steady Incompressible83

Viscous flow. Since a solution for BEP is difficult to obtain and not treated84

in literature, a piece-wise linear approximation (B̃EP ) is considered. The fact85

that B̃EP approximates or not the solution of BEP is a fundamental discussion86

of Boundary Element Methods (BEM). As a consequence, this document does87

not treat this aspect but focuses on the solution of the singular integrals (for88

constant -order 0- boundary and interior elements) found in B̃EP . Which are89

needed to obtain an approximate solution for BEP by solving B̃EP .90

91

This manuscript is organized as follows: Section 2 discusses the relevant92

literature. Section 3 presents the approximation of the BEP and the proposed93

method to avoid the singularities in the Boundary/Surface integrals of B̃EP .94

Section 4 discusses the results of various simulations. Finally, section 5 discuses95

the conclusions and introduces to future work.96

2 Literature Review97

The current literature for avoiding the singularities present in general BEM for-98

mulations is divided into three main categories. (1) Sub-segmentations of the99

integration domain, (2) distortion of the singular boundary/surface element,100

(3) displacement of the source node in the boundary/surface element. Table 2101

presents the main advantages and disadvantages of these main categories.102

103
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2.1 Element Sub-segmentation104

The integration domain (singular element) is subdivided into smaller domains105

around the singular position. A numerical integration (quadrature scheme) is106

computed in the resulting non-singular domains. Depending on the type of sin-107

gularity, special quadrature schemes may be utilized for the remaining singular108

part. In some cases, the singular part is computed in the Cauchy Principle109

Value sense. Refs. [6, 9, 11, 13, 17, 21, 20] present their methods in the fields110

of elasticity, fluid dynamics and elastodynamics.111

112

2.2 Distortion of the Singular Element113

The singular element is distorted (lumped) in order to separate the boundary114

from the source node. In consequence, the previous singular kernels can be115

integrated analytically with a coordinate transformation and then the limit is116

computed for shrinking the boundary to its original state. Ref. [1] presents117

their method in the field of Fluid Dynamics, Ref. [10] for a general case, and118

Ref. [18] implements the method in the field of elasticity.119

120

2.3 Displacement of the Source Node121

The source node is displaced from the singular element (boundary). Conse-122

quently, the integrand (Green function) is modified, becoming non-singular and123

the integral is evaluated analytically. Finally, the limit is taken as the source124

node approaches the boundary to obtain the singular integral result. Refs.125

[2, 12] present their method in the fields of elasticity and fracture analysis, re-126

spectively.127

128
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2.4 Conclusions of Literature Review129

Table 2: Different approaches and our contribution.

Approach Refs. Advantages Disadvantages

Sub-segmentation of the

singular boundary/surface

element

[6, 8, 9,

11, 13,

17, 20,

21]

(1) Possible errors present in

complex analytic/symbolic eval-

uation of integrals are avoided.

(2) Element order scalability.

(1) High computational cost for

the evaluation of each segment.

(2) Complex quadrature schemes

are needed for singular or near-

singular integrals. (3) Prone to

quadrature errors.

Distortion of the singular

boundary/surface element

[1, 10, 15,

18]

(1) Simple computation of inte-

grals with pre-calculated formu-

lae.

(1) Increased complexity of the

integration scheme because of

domain coordinate transforma-

tions.

Displacement of the

source node in the

singular canonical bound-

ary/surface element (our

approach)

[2, 12] (1) Simple computation of inte-

grals with pre-calculated formu-

lae. (2) No modification of the

integration domain, no need for

coordinate transformation.

(1) Complex analytic integra-

tion, prone to errors.

To the best of our knowledge, for the specific fluid dynamics field mentioned in130

Section 1, the only implemented methods to compute the singular integrals are131

the sub-segmentation and distortion methods (Refs. [1, 6, 8]). The displace-132

ment of the source node method has not yet been implemented and tested. As133

a consequence, this manuscript implements it as an alternative to compute the134

boundary singular integrals of the Green functions present in the BEM formula-135

tion for the specific flow. In addition, a direct analytic evaluation of the surface136

singular is presented since, which to the best of our knowledge, has not been137

utilized in the specific flow. These methods present the advantage of allowing138

for low computational costs and no integration domain mapping, which permits139

a simpler implementation and it is less prone to analytic integration errors.140
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3 Methodology141

3.1 Assumptions and Preconditions142

The Boundary Element Method formulation presented in this section is strongly143

based on the formulation proposed by [8] for Steady Incompressible Thermovis-144

cous flow. It is our simplification for the flow characteristics specified in section145

1 and numerical treatment of BEM. The simplifications are (1) The flow is adi-146

abatic and isotherm leading to a simplified system of governing equations, (2)147

Green functions presented by [8] also represent the flow of this manuscript, (3)148

low order elements (constant) are used for the discretization of the boundary149

(B) and surface (S), (4) the singular integrals (B and S) are approached in an150

analytic way (scenario of our contribution), (5) near singular cases are not taken151

into account.152

3.2 Domain Layout153

The general domain layout for this manuscript is presented on Figure 1. Com-154

plete domain Ω = R∪B, with B being the boundary and R the interior region.155

The boundary B is conformed by Γ0 ∪ Γi, the exterior and interior boundaries,156

respectively.157
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Figure 1: BEP domain layout. Ω = R ∪B.

3.3 Governing Equations158

The governing equations for Steady Incompressible Thermoviscous Flow pre-159

sented in [8] are as follows , were summation convention is used:160

Mass conservation:
∂uj
∂xj

= 0. (1)

Momentum conservation: µ
∂2ui
∂xj∂xj

− ∂p

∂xi
− ρuj

∂ui
∂xj

+ ~fi = 0. (2)

Energy conservation: k
∂2θ

∂xj∂xj
− ρcεuj

∂θ

∂xj
+ Y + Ψ = 0. (3)

161

162

For purposes of this work, some assumptions are introduced to Eqs. (1-3).163

These are:164

1. Constant temperature,165

∂θ

∂xi
= 0.
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2. Heat sources and viscous dissipation are not considered,166

Y = 0, Ψ = 0.

Because of statements 1 and 2, Eq. (3) is not considered.167

3. There aren’t any body forces,168

~fi = 0.

After applying the assumptions, the resulting governing equations are:169

Mass conservation:
∂uj
∂xj

= 0. (4)

Momentum conservation: µ
∂2ui
∂xj∂xj

− ∂p

∂xi
− ρuj

∂ui
∂xj

= 0. (5)

3.4 Continuous Formulation of the BEM Integral Equa-170

tion171

With all the assumptions presented in section 3.3 and the linearization of the172

non-linear convective term assumed by [8], the Eq. (16a) from [8] is rewritten in173

Eq. (6). This is the continuous integral formulation of the Boundary Element174

Method to be solved. Because of the linearization, the boundary solution has175

to be iterated to obtain convergence. This is discussed later in the manuscript.176

177

The formulation of the BEM equation is presented in terms of vi (velocity178

perturbation) and ti (traction) instead of ui (absolute velocity) and p (pressure)179

as in Eq. 5. Such change of variables and formulation corresponds to the180

presented by [8]. It is not detailed in this manuscript since it does not correspond181

to the focus of the present work. Some of the terms of Eq. 6 are described in182

Table 3. See also [1] for a detailed development of the boundary integral equation183

in terms of velocity and traction.184
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cij(ξ)vi(ξ) =

∫
B

[Gij(X − ξ)ti(X)− Fij(X − ξ)vi(X)

−Gij(X − ξ)ρ(Vk(X) + vk(X))nk(X)vi(X)]dB(X)

−
∫
S

[
∂Gij(X − ξ)

∂xk
ρ(Vk(X) + vk(X))vi(X)

]
dS(X).

(6)

Table 3: Terms description for the continuous BEM equation. T : Time units,

L: Distance units, M : Mass units.

Term Description Dims.

Vi. Free flow velocity vector. L
T .

vi = ui − Vi. Velocity perturbation vector. L
T

ti. Traction vector. M
LT 2

cij(ξ) = δij/2. Constant term. -

3.4.1 Green Functions185

Eqs. (7 - 9) present the Green Functions utilized in Eq. (6). Singularities occur186

when Xi = ξi, making r2 = 0. Fij is assumed positive (as in [1]) for purposes187

of this work.188

Gij =
1

4πµ

(yiyj
r2
− δij ln r

)
. (7)

189

Fij =
1

2πr

(
2yiyjyknk

r3

)
. (8)

190

∂Gij
∂xk

=
1

4πµr

(
δjkyi
r

+
δikyj
r
− δijyk

r
− 2yiyjyk

r3

)
. (9)

191

yi = Xi − ξi. (10)
192

r2 = yiyi. (11)

3.5 Numerical Implementation193

Since no analytic solution can be found for the integral BEM equation (Eq. 6),194

a numerical approximation is sufficient. In order to obtain B̃EP , the numerical195
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solution scheme and the discretization for the BEP is discussed in this section.196

The scheme represented in Figure 2 is the process by which a numerical solution197

to B̃EP is found.198

199

Simulation
initialization

matrices
calculation for 

and 

Solve system of
Eqs. See Eq.

(34)

Calculate 
for cells (Eq.

(12))

Recalculate 
(Table 2).End ?

Yes

initialization
for . 

initialization for
. See Table 2

Mesh, 
boundary ( ) and 

: flow ( ) conditions

,Mesh

Boundary conditions ,
for ,

Mesh ,Mesh

-
-Boundary Solution for cells

No

-Boundary Solution
-Mesh

- for 

-Current 
-Updated 

Boundary 
solution

Figure 2: Flow chart for the general process to achieve a numerical solution for

B̃EP . fc: Flow conditions variables.

The end condition in Figure 2 can be met by one or both of the following200

conditions. The first being that a number of iterations is met. The second is201

accomplished when the difference of the boundary conditions between the i− 1202

and i iteration is less than a tolerance ε. For this manuscript both criteria are203

utilized but the iterative process is ended when a number of iterations is reached204

because it occurs prior to the convergence of the boundary conditions under a205

tolerance.206

207
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3.5.1 Spatial Discretization208

The domain Ω for the BEP has to be discretized since the analytic continuous209

equation that represents it cannot be determined. B and S are discretized with210

the following elements:211

• Boundary Elements: 1-dimensional constant elements (see Figure (3)).212

Defined by two geometrical nodes and one functional node (centroid).213

• Surface Cells: 2-dimensional constant triangular cell elements (see Fig-214

ure (3)). Defined by 3 geometrical nodes and one functional node (cen-215

troid).216

:Geometrical Node

:Functional Node

Figure 3: Boundary (left) and surface (right) elements.

3.5.2 Discretized BEM Equation [8]217

Taking into account the spatial discretization defined in section 3.5.1, the Eq.218

(6) is reformulated in Eq. (12).219

220

cijvi(ξ) =

M∑
m=1

ti(Xm)

∫
Bm

Gij(r)dB − vi(Xm)

∫
Bm

Fij(r)dB − toi (Xm)

∫
Bm

Gij(r)dB


+

L∑
l=1

σo
ki(Xl)

∫
Sl

∂Gij(r)

∂xk
dS ,

(12)
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with M and L being the total number of boundary elements and surface cells.221

Descriptions for some terms of Eq. (12) can be seen in Table 4.222

223

Table 4: Terms description for the Discretized BEM equation. T : Time units,

L: Distance units, M : Mass units.

Term Description Dims.

B =
∑M
m=1Bm. Boundary discrete composition. -

S =
∑L
l=1 Sl. Non-linear convective region dis-

crete composition.

-

toi = ρ(Vk+vk)nkvi. Non-linear convective traction

vector for boundary elements.

M
LT 2 .

σoki = ρ(Vk + vk)vi. Non-linear convective traction

tensor for surface cells.

M
LT 2

3.6 Integral Approaches224

The integrals contained in Eq. (12) are evaluated for all elements to obtain a225

linear system of equations in terms of unknown boundary conditions. Some of226

them are singular and some non-singular. For this, the current section presents227

an implementation of the method proposed by [2, 12] for the evaluation of the228

singular boundary integrals. In addition, a direct analytic evaluation is also229

discussed for the singular surface integrals as part of our contribution in the230

BEM solution for the specified flow.231

3.6.1 Non-singular and Singular Situations for Boundary and Sur-232

face Elements233

The boundary and surface integrals are solved for all combinations of ~ξ and234

~X, both positioned in boundary and surface elements. The positioning of ~ξ in235

the boundary elements (Figure 4) corresponds to the integration process needed236

to compute the missing boundary conditions. In addition, positioning ~ξ in the237
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surface cells (Figure 5) is performed for integrals needed to recalculate σo in each238

iteration. Cases in which X and ξ are positioned in different topological entities239

(element and cell) are omitted in Figures (4, 5) since these are not singular.240

(a) (b)

Figure 4: Boundary (B) ξ and X elements positions for boundary integrals.

Surface (S) is the relevant non-linear convection zone. (a) Non singular situ-

ation. ξ and X are not coincident. ~r = X − ξ 6= 0. Numerical integration

is applied for the mesh elements. (b) Singular situation. ξ and X are coinci-

dent. ~r = X − ξ = 0. Situation for which our contribution is made. Analytic

integration scheme is implement over a canonical element.
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(a) (b)

Figure 5: Surface (S) ξ and X elements positions for surface integrals. Integral

evaluation cases for the calculation of σo between iterations. (a) Non singular

situation. ξ and X are not coincident. ~r = X − ξ 6= 0. Numerical integration is

applied for the mesh elements. (b) Singular situation. ξ and X are coincident.

~r = X − ξ = 0. Situation for which our contribution is made. Direct analytic

integration is performed over a canonical element.

3.6.2 Non-singular Boundary and Surface Integrals241

For the non-singular cases X 6= ξ, the integration over the boundary and sur-242

face is computed numerically. A 3-point and 1-point Gaussian Quadrature are243

performed for boundary and surface integrals respectively. These numerical in-244

tegrals are not treated or explained in detail since they are not the focus of this245

article.246

3.6.3 Singular Boundary Integrals247

For the singular boundary integrals (~ξ = ~X), the computation is performed248

with the method presented in [2, 12]. The method consists in displacing the249

source node ξ a distance D (Figure 6). After displacement, the now non-singular250

boundary integrals can be evaluated analytically and the limit taken as D → 0+251

(since D is a distance) as per Eqs. (13) and (14). A graphical explanation of252

the displacement is presented in Figure 6. The integration is performed over a253

canonical element (with size l of the real element) in its local coordinate system.254
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AIGij(Xm − ξm) = lim
D→0+

∫
Bm

Gij(Xm − (ξm −D))dB. (13)

255

256

AIFij(Xm − ξm) = lim
D→0+

∫
Bm

Fij(Xm − (ξm −D))dB. (14)

257

258

259

This method of displacement of the source node is presented by [2, 12] for260

the elasticity and fracture fields respectively. Our contribution consists in its261

implementation applied in the field of fluid dynamics described in section 1. In262

addition, a contribution is proposed as the direct analytic solution of the singu-263

lar surface integrals (see section 3.6.4).264

265
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(a) (b)

Figure 6: Analytic integration over the canonical singular element m (see Fig-

ure 4 (b)) ξ = Xm. Canonical coordinate system. Integrating for U1 ∈ [−l/2→

l/2] in local canonical coordinates. Scenario (subfigure (a)) of our contribution.

(a) Singular case occurs when x = 0. X and ξ coincide (bottom). (b) Displace-

ment of source node (ξ) for the correction of the singular case. ∀x,~r 6= 0.

The mathematical procedure for avoiding the singularity (Figure 6 (a)) and266

the analytic integral evaluation is discussed next. The modified arguments of267

the Green functions (Eqs. 10 and 11) are presented in Eqs. (15-17). These are268

then replaced in each Green functions Gij and Fij as shown in Eqs. (18,24) for269

G11, F11.270

271

y1 = X1 − ξ1 = U1 − 0 = U1. (15)
272

y2 = X2 − ξ2 = 0− (−D) = D. (16)
273

r =
√
U2
1 +D2. (17)

G11(X − ξ,D) =
1

4πµ

(
U2
1

U2
1 +D2

− ln

(√
U2
1 +D2

))
. (18)
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The result of integrating this modified function is presented in Eq. (19).274

Following the same procedure, the results for the integrands G12, G21 and G22275

are presented in Eqs. (20-22).276

lim
D→0+

1

4πµ

∫ l/2

−l/2

U2
1

U2
1 +D2

− ln

(√
U2
1 +D2

)
dU1 =

l
(
− ln

(
l2
)

+ ln (4) + 4
)

8µπ
.

(19)

lim
D→0+

∫ l/2

−l/2
G12(X − ξ,D)dU1 = 0. (20)

lim
D→0+

∫ l/2

−l/2
G21(X − ξ,D)dU1 = 0. (21)

lim
D→0+

∫ l/2

−l/2
G22(X − ξ,D)dU1 =

l
(
− ln

(
l2
)

+ ln (4) + 2
)

8µπ
. (22)

277

278

Furthermore, to solve AIFij(Xm− ξm), one has that the normal vector n̂ of279

the canonical element is,280

n1 = 0, n2 = 1. (23)

Now, taking into account the normal vector, the variables in Eqs. (15-17)281

are replaced for the integrands Fij as seen in Eq. (24) for F11. The integration282

is then performed as expressed in Eq. (14). This is shown in Eqs. (25-28).283

284

F11(X − ξ,D, n̂) =
1

2π

(
2U2

1D

(U2
1 +D2)2

)
. (24)

lim
D→0+

2

2π

∫ l/2

0

2U2
1D

(U2
1 +D2)2

dU1 =
1

2
. (25)

lim
D→0+

2

∫ l/2

0

F22(X − ξ,D, n̂)dU1 =
1

2
. (26)
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lim
D→0+

∫ l/2

−l/2
F12(X − ξ,D, n̂)dU1 = 0. (27)

lim
D→0+

∫ l/2

−l/2
F21(X − ξ,D, n̂)dU1 = 0. (28)

For the integrals of F12 and F21, the result is nule since this functions are285

odd with respect to 0. The results obtained in Eqs. (19-22) and (25-28) are286

transformed (see section 3.6.5) and stored in matrices AIGm and AIFm. These287

matrices compose the diagonal band of the influence matrices G and F (see288

section 3.6.6).289

290

3.6.4 Singular Surface Integrals291

As expressed in Figure 5, the surface integral evaluation presents a singularity292

when ξ = X (see also Figure 7). This occurs only for the integration needed to293

calculate v(ξ) (recalculation of σo) in each new iteration (see subsection 3.8).294

Even though the singularity is present in the Green function
∂Gij

∂xk
, the integral295

exists and is bounded. Consequently, an analytic integration without avoiding296

the singularity is performed over a canonical element (Figure 8) and then trans-297

formed for the real element.298

299
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(a)

Cell Cell

(b)

Figure 7: General integration case for region S. Singularity occurs when i = j

(triangles il and j l coincide) and points ξ and X are coincident (~r = 0). (a)

General surface integration case. Selected cells j l (X) and il (ξ). (b) Selected

region in Figure 7(a).

Figure 8: Canonical element (axis U1, U2). Domain for the analytic integration

of
∂Gij(X−ξ)

∂Uk
. Scenario of our contribution.

Since the function
∂Gij(X−ξ)

∂Uk
has a reflection with respect to the singularity300

point ξ = X in the canonical element, the integral of such function exists and301

has a bounded value. The integration is performed in SymPy [16] with the302

integrate() method. The results of such integration are given in Table 5. Since303 ∫
Sm

∂G12

∂xk
dSm =

∫
Sm

∂G21

∂xk
dSm, the result for the integrands ∂G12

∂xk
are the only ones304
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shown.305

306

Table 5: Results for singular surface integrals of
∂Gij

∂Uk
. Results for canonical

element (see Figure 8). SymPy [16] used for integral evaluation. Results given

in symbolic format as per SymPy display.

Analytic Integral Equation Result Observations

Ia
∂G11

∂U1
=
∫ 1

0

∫ 1−U1

0
∂G11(X−ξ)

∂U1
dU2dU1 −−3+ln( 5

2 )+2 tan−1(3)

24µπ Results are

transformed

(see Eq. 33)

and assembled

in oIa∂G (see

Figure 12).

Ia
∂G12

∂U1
=
∫ 1

0

∫ 1−U1

0
∂G12(X−ξ)

∂U1
dU2dU1

−3+ln( 5
2 )+2 tan−1(3)

24µπ

Ia
∂G22

∂U1
=
∫ 1

0

∫ 1−U1

0
∂G22(X−ξ)

∂U1
dU2dU1 − 3−2π+tan−1( 117

44 )+ln( 5
2 )

(24πµ)

Ia
∂G11

∂U2
=
∫ 1

0

∫ 1−U1

0
∂G11(X−ξ)

∂U2
dU2dU1 − 3−2π+tan−1( 117

44 )+ln( 5
2 )

(24πµ)

Ia
∂G12

∂U2
=
∫ 1

0

∫ 1−U1

0
∂G12(X−ξ)

∂U2
dU2dU1

−3+ln( 5
2 )+2 tan−1(3)

24µπ

Ia
∂G22

∂U2
=
∫ 1

0

∫ 1−U1

0
∂G22(X−ξ)

∂U2
dU2dU1 −−3+ln( 5

2 )+2 tan−1(3)

24µπ

3.6.5 Transformations to the Real Elements for Boundary and Sur-307

face Analytic Integrals308

The results of the singular integrals, both for boundary and surface elements,309

are obtained for canonical elements. Therefore, these results must be mapped310

from a canonical domain to the real domain of the B̃EP . The transformations311

that perform such mapping are discussed next for each element type (boundary-312

surface).313

314

Boundary Elements Transformation315

For the boundary integrals, a tensor transformation of the results of Eqs. (13)316

and (14) is performed. This transformation is computed with a transformation317

matrix N (Eq. 29), which is calculated for each element with the components318

ni of its normal vector n̂. See Figure 9 for a graphical representation of the319

element orientation in both coordinate systems.320

321
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N =

cosα − sinα

sinα cosα

 =

n2 −n1
n1 n2

 . (29)

322

323

The transformation in Eqs. (30-31) represents the tensors AIGij and AIFij324

in the x y coordinates.325

oAIGij = NTAIGijN. (30)
326

oAIFij = NTAIFijN. (31)

Figure 9: Boundary element in canonical and real orientation. Canonical

(U1 U2) and real (x y) coordinate systems.

Surface Elements Transformation327

328

The analytic integration is executed over a canonical constant triangular329

element, as shown in Fig 8. Therefore a transformation to the real domain (see330

Figure 10) is needed. This transformation T : Ωc → Ωr is affine. Therefore, the331

Jacobian that represents such transformation is constant for each element.332
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Figure 10: Transformation from canonical element (right) to mesh element (left).

Since the Jacobian is constant for each element, the determinant is the same333

at each point, and it can be calculated as the ratio of the areas. Eq. (33)334

presents an example on how the transformation of the integral is applied.335

|J | = Ar
Ac
. (32)

336

oAI
∂Gij
∂xk

= |J |AI ∂Gij
∂Uk

. (33)

3.6.6 Boundary and Surface Influence Matrices Assembly337

Influence matrices G,F,D are assembled for the system of equations (Eq. 12)338

to be written in matrix form (Eq. 34). These are represented as block matrices339

for ease of understanding. Each row i contains all results of integrals for ξi w.r.t340

each Xj , j = 1, 2, ...,M .341

342

Boundary and Surface Matrices343

G,F,D are needed in two processes -solution of system of equations (Eq. 34),344

recalculation of v(ξ) for cells (S) in each iteration (see Figure 2). For the first345

case, the matrices coefficients correspond to the results of integrals with ξ placed346

in B. For the second case, ξ is placed in S. For both cases X is placed in B for347

G,F or in S for D.348

349

Assembly of Matrices350

The composition of G is shown in Figure 11. The positions in the diagonal351

(i = j) correspond to the transformed results of the singular integrals (Eqs. 30)352
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of Gij(X − ξ). This if ξ and X lie in the same element. Otherwise, the coef-353

ficients of the diagonal correspond to non-singular integrals (see section 3.6.2).354

In any case, the non-diagonal terms (i 6= j) correspond to non-singular integrals.355

356

For F, the assembly is identical to G (see Figure 11). The exception being357

that the coefficients correspond to the transformed results from the integrals of358

Fij(ξ−Xm, n̂) and the contribution of the diagonal matrix c (see Table 4). For359

G and F, the sub-matrices oAIGm and oAIFm are of size 2× 2.360

361

Figure 11: Matrix G composition. Block matrix representation. Results from

boundary integration of G(X − ξ).

For D, the assembly is similar to both of G and F. The difference relies in362

the assembly of the sub-matrices oAI∂G shown in Figure 12 (b). When u(ξ)363

is calculated in each iteration, the diagonal sub-matrices (Figure 12) of D are364

composed of the values in Table 5.365

366
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(a) Influence matrix D

(b) Sub-matrix oAI∂G composition for cell m

Figure 12: Matrix D composition. Block matrix representation. Results from

surface integration of ∂G(X−ξ)
∂x .

3.7 System of Equations367

The B̃EP results in a linearized system of equations so that the unknown bound-368

ary conditions can be found in an iterative process. The evaluation of Eq. (12)369

for all elements in B (ξi, i = 1, 2, ...,M), produces this system. It is written in370

matrix form as follows (see also Figure 13).371

Gt− Fv −Gto + Dσo = 0. (34)
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Figure 13: System of equations (Eq. 34). Known Boundary Conditions (green).

Unknown Boundary Conditions (red). M: Total number of B elements. L: Total

number of S cells. Vector to depends on the Known and Unknown terms of the

boundary v.

Eq. 34 can be reorganized and rewritten in terms of a vector of unknowns372

x and a vector of known boundary conditions y,373

g(x) = Ax−Dσo + Gto −By = 0. (35)

, for which matrix A(G,F, t,v) corresponds to unknown boundary conditions.374

Matrix B(G,F, t,v) corresponds to known boundary conditions. Eq. 35 is375

solved to obtain the solution in the boundary.376

377

3.8 Iterative Process378

An iterative process is necessary due to the assumption that ρuj
∂ui

∂xj
is known379

for the linearization of Eq. (5). This linearization allows the formulation of380

the BEM integral equation and then iterated over σoki to converge the unknown381

boundary values.382

383

The iterative process initializes σoki = 0. Then, at each iteration i, the384

boundary values are calculated and σoki is updated according to these new re-385

sults. ui(ξ) is calculated with the new Boundary Conditions for recalculation386

of σoki.387

388
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The iterative process is terminated once the tendency of convergence is ob-389

served in the boundary solution. This happens when the fluctuations between390

states of iteration i and i − 1 are insignificant. Since the convergence can not391

be ensured, a specific number of iterations are performed. This number of iter-392

ations is determined arbitrarily and the convergence behavior is observed.393

394

4 Results395

4.1 Comparison of Singular Integrals Results396

A comparison of the results of the singular boundary integrals of Eqs. (7-8) is397

observed in this section. These are computed for boundary canonical elements398

(Figure 6) with the method presented in this manuscript and the method pre-399

sented in Ref. [1]. These elements have a size of l = 2, with x ∈ [−1, 1]. µ is400

assumed unitary, µ = 1.401

402

Table 6: Singular boundary integral results for Green functions Gij(X − ξ) and

Fij(X − ξ). Integration over canonical boundary element.

Integrand Source Node Displacement

[2, 12] (Our implementation)

Distortion Method [1]

G11
1
π 0

G12 0 0

G21 0 0

G22
1
2π 0

F11 0.5 0.5

F12 0 0

F21 0 0

F22 0.5 0.5

Refs. [6, 8] do not provide details for items such as (1) quadrature scheme403
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utilized, (2) number of integration points, (3) 2-dimensional alternative chosen404

in the case of [6], (4) domain mapping. Because of these and the fact that they405

do not specify their procedure nor provide their results for the singular bound-406

ary integrals, these cannot be reproduced for comparison. Nevertheless, it does407

not mean the general procedure and results obtained by [6, 8] are questioned.408

We state that we do not have sufficient information to reproduce the mentioned409

results for our specific case.410

411

The null values obtained for the singular integrals of Gij , in the case of the412

distortion method [1], are obtained directly from that manuscript. In appendix413

B it is said that, “But for the boundary integral I2 (2.34), which has a removable414

singularity of order (ln r), its contribution along the bumped part around the415

singularity will be exactly zero.” [1]. Since no additional information or expla-416

nation is provided, the interpretation leads to the result presented in Table 6.417

We do not have further information regarding these discrepancies.418

419

In addition to the results presented in Table 6, the analytic result for the420

integral of Gij , without avoiding the singularity, is given in Table 7 to compare421

with the result obtained with the Source Node Displacement method. This422

comparison is shown because of the discrepancy found between the Source Node423

Displacement method and the Distorsion method. This result is obtained by424

integrating analytically the same canonical element for Table 6. The integrand425

Gij is not modified and is assumed as per Equation 7. The analytic integrals426

for G11 and G22 are expressed in Equations 36 and 37 .427

428

1

π

∫ 1

−1
(1− ln

√
x2)dx. (36)

429

430
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1

π

∫ 1

−1
(− ln

√
x2)dx. (37)

431

432

Table 7: Singular boundary integral results for Green function Gij(X − ξ). In-

tegration over canonical boundary element. Source Node Displacement method

and analytic integral without avoiding the singularity.

Integrand Source Node Displacement

[2, 12] (Our implementation)

Analytic Integral Result

Without Avoiding the

Singularity

G11
1
π

1
π

G12 0 0

G21 0 0

G22
1
2π

1
2π

From Table 7 it can be seen that the approximation of the singular integral of433

Gij by means of the Source Node Displacement method is correct. The integral434

results for the Fij function were not computed by an analytic evaluation. This435

is because the results found by the source node displacement method were al-436

ready compared and found equal to the ones found in the Distortion Method [1].437

438

4.2 Numerical Examples439

The numerical examples discussed next are solved using the Boundary Method440

formulated previously. This examples are used to test the approximation with441

the analytic solutions of the singular integrals. The results are obtained with442

an implementation in Python of the numerical solution of BEM presented in443

section 3. This implementation is developed by the research team specifically444

for a free flow case with constant velocity Vi (free flow velocity).445

446
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Domain Discretization447

Discretization of the boundary B and the region S, for each example (Fig-448

ures 15- 19), is exhibited in this section. Elements used for discretization of the449

boundary and interior are discussed in section 3.5.1. For the examples in Fig-450

ures 15-19, the domains (Ω’s) are unbounded. External boundary Γ0 to Ω does451

not exist. For these, only a region around S is evaluated in order to observe the452

flow’s behavior around the submerged object. Figure 14 displays an indication453

of the angle of attack corresponding to Figs.15-16.454

455
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]

AoA

Angle of Attack (AoA) indication

1.50

x [m]

Figure 14: Indication of the angle of attack for the airfoils.
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Figure 15: Mesh of airfoil at 0◦ angle of attack.
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Figure 16: Mesh of airfoil at 3◦ angle of attack.

34



− 4 − 2 0 2 4
x[m ]

− 2

− 1

0

1

2

y
[m

]

Mesh Geom etric Ent it ies

Figure 17: Mesh of 0.5 m radius circle. 2000 boundary elements. 7866 cell

elements.
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Figure 18: Mesh of 0.2 m side square. 2001 boundary elements. 4445 cell

elements.
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Figure 19: Mesh of ellipse. 2000 boundary elements. 11976 cell elements.

Flow Conditions/Fluid Properties.456

The flow conditions and fluid properties used for the simulation of the numerical457

examples are presented in Table 8. The free flow velocity V1(Re, ν, c) is different458

for each example. It depends on the characteristic length c of each submerged459

object.460

461

ρ[ kg
m3 ] µ[m

2

s ] ν[ kgms ] Re V1[ms ] V2[ms ]

1.225 1.81× 10−5 1.48× 10−5 2 V1(Re, ν, c) 0

Table 8: Flow conditions. Fluid properties. V1: free flow velocity in x direction.

V2: free flow velocity in y direction.

Boundary conditions.462

The boundary conditions are assigned solely to the boundaries Γi. For every463

example’s Γi, a No-slip condition is defined as a Dirichlet boundary condition464

ui(Γ) = 0. Consequently, the traction t(Γ) is unknown. In addition, σo is465

initialized as a null vector.466

36



4.3 Integral Coefficients Results for Green Functions Gij(X−467

ξ) and Fij(X − ξ).468

The integral coefficients for Green Functions Gij(X − ξ) and Fij(X − ξ) are469

presented for the mesh in Figure 15. These results are given in order to observe470

the behavior of the singular (analytic) and non-singular (numerical) integrals471

along the boundary. In addition, these results provide insight on the tendency472

of the non-singular integrals and how the singular integral fits in this tendency.473

474

Three elements are selected (see Figure 20) for observation. It should be475

noticed that elements ξ1 and ξ1000 are neighbors. This is worth mentioning476

because of the way the elements and their corresponding integral results are477

displayed in Figures 21 and 22. In addition, each curve (blue, yellow and green)478

corresponds to the integral coefficient results (analytic and numerical) of the479

evaluation of the selected elements (ξ1, ξ300 and ξ500) w.r.t all other elements480

in the boundary. This evaluation is for green functions Gij and Fij .481

482

1

Figure 20: Selected neighbourhoods normals for Figures 21 and 22.
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Figure 21: Analytic and numerical results for the integrals of Green function G.

Airfoil at 0◦ angle of attack (mesh in fig 15). A: Result of analytic integration for

singular case in the boundary. B: C0 Discontinuity produced by neighbourhood

with strong normal changes. (a) G11(X − ξ). (b) G12(X − ξ). (c) G22(X − ξ).
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Figure 22: Analytic and numerical results for the integrals of Green function F.

Airfoil at 0◦ angle of attack (mesh in fig 15). A: Result of analytic integration for

singular case in the boundary. B: C0 Discontinuity produced by neighbourhood

with strong normal changes. (a) F11(X − ξ, n̂). (b) F22(X − ξ, n̂).

For Figures 21 and 22 the integral values at extremes X = 1 and X = 1000483

correspond to neighboring elements in which a continuity of the results’ ten-484

dency can be seen. As a consequence, a peak can be seen in element X = 1000485

for the ξ = 1 curves. In addition, the peaks in the curves marked with (A) corre-486

spond to the analytic results of the singular integrals (ξ = X). Moreover, other487

peaks can be seen near the element X = 500 (marked with B) in Figures 21488

and 22. This correspond to numerical (non-singular) integrals for ξ = 1 and489

ξ = 300. The specific case X = ξ = 500 is marked with (A) and (B) because490

the result corresponds to an analytic integration due to the singularity and the491

element belongs to a neighbourhood with strong normal changes, respectively.492
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493

Even though C1 discontinuities can be seen at neighborhoods with strong494

geometric changes (n̂m · n̂m+1 << 1), they do not affect in any means the495

approximation of the singular integrals. They are mentioned because of their496

implication in the integral behavior. These discontinuities produce a peak in497

the integrals at the selected points (B) in Figures 21 and 22. These geometric498

discontinuities are a normal part of the example’s discretization. They may or499

may not induce problems in the simulations but are not treated since it has no500

relation with the computation of the singular integrals, which is the focus of the501

manuscript.502

503

4.4 Velocity Vector Field ui504

The velocity vector field ui is observed in the vicinity of the submerged objects505

as shown in Figures (23-25). The prediction of the flow is obtained with the506

BEM procedure presented in Section 3 for a number of 40 iterations. These507

results are provided in order to observe the behavior of the numerical compu-508

tation with the proposed approximation of the singular integrals. Meshes in509

Figures (17) and (19) have no velocity vector field results. This is caused by510

divergence in the unknown boundary conditions (see section 4.5).511

512
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(a)

(b)

Figure 23: ~u(x, y) results for vicinity of airfoil at 0◦ Angle of Attack. Simu-

lation: Python/ANSYS, visualization: ParaView. (a) ANSYS simulation. A:

observation region for post-obstruction flow. B: observation region for velocity

gradient. (b) BEM simulation. A: observation region for post-obstruction flow.

B: observation region for velocity gradient.
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(a)

(b)

Figure 24: ~u(x, y) results for vicinity of airfoil at 3◦ Angle of Attack. Simu-

lation: Python/ANSYS, visualization: ParaView. (a) ANSYS simulation. A:

observation region for post-obstruction flow. B: observation region for velocity

gradient. (b) BEM simulation. A: observation region for post-obstruction flow.

B: observation region for velocity gradient.
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(a)

(b)

Figure 25: ~u(x, y) results for 0.1m side square vicinity. Simulation:

Python/ANSYS, visualization: ParaView. (a) ANSYS simulation. A: obser-

vation region for post-obstruction flow. B: observation region for velocity gra-

dient. (b) BEM simulation. A: observation region for post-obstruction flow. B:

observation region for velocity gradient.
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(a)

(b)

Figure 26: Absolute velocity streamlines results for vicinity of airfoil at 0◦ Angle

of Attack. Simulation: Python/ANSYS, visualization: ParaView. (a) ANSYS

simulation. (b) BEM simulation.
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(a)

(b)

Figure 27: Absolute velocity streamlines results for vicinity of airfoil at 3◦ Angle

of Attack. Simulation: Python/ANSYS, visualization: ParaView. (a) ANSYS

simulation. (b) BEM simulation.
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(a)

(b)

Figure 28: Absolute velocity streamlines results for 0.1m side square vicinity.

Simulation: Python/ANSYS, visualization: ParaView. (a) ANSYS simulation.

(b) BEM simulation.

Figures 23-25 show an approximation of laminar flow behavior around a sub-513

merged object. Results from ANSYS are considered as a point of comparison.514

Results obtained with the BEM formulation and singular integral solution (sub-515
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figures (b)) presented in section 3 preserve the general order of magnitude of516

the absolute velocity. The BEM results approximate changes in velocity of the517

free flow due to the obstruction caused by the submerged objects. This approx-518

imation preserves the no-slip boundary condition defined. Nonetheless, some519

differences in the changes of velocity and overall flow characteristics between520

the simulations is observed. A bigger region of free flow is affected (fluctuations521

in direction and magnitude of the free flow) by the submerged objects in the522

BEM simulations as can be seen in Figures 26-28.523

524

The two main noticeable differences between the results obtained from AN-525

SYS and BEM simulations are the following. (1) A gradient of the velocity526

with a smaller slope, in comparison to ANSYS, is present in BEM simulation527

as can be seen in regions marked with B in Figures 23b, 24b and 25b. (2) A528

wider region of free flow is disturbed around the submerged object and free flow529

is achieved further from the object (region A in Figures 23b, 24b and 25b) in530

comparison to the ANSYS simulation.531

4.5 Convergence of the Boundary Unknowns532

The convergence of the unknown boundary conditions (X) in the iterative cycle533

are given as additional results (see Figure 29). This manuscript does not assess534

the convergence of the solution as its objective. The objective is to implement535

a simplified analytic integration scheme to solve the boundary problem. These536

results aid in assessing whether a stable solution is achieved in the numerical537

examples. This can be seen with the behavior of the boundary solutions in538

Figure 29. Random boundary elements where selected to visualize the history539

of their X1 boundary conditions for 40 iterations.540

541
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Figure 29: Convergence of unknown values X1 in B. Random boundary ele-

ments (functional node) selected. (a) Airfoil at 0◦ Angle of Attack. (b) Airfoil

at 3◦ Angle of Attack. (c) Square of 0.1 m side. (d) Circle of 0.5 m radius. (e)

Ellipse of 1 m major axis.

For the cases of the circle and ellipse (Figures 29(d) and 29(e)), an initial542

intention of convergence (low variation of the results) is achieved for the first543

10-14 iterations. After the 14th iteration the divergence is exponential and no544

boundary solution can be found. This explains why no ui field is presented for545

these cases. It can be seen that examples with small geometric changes (circle546

and ellipse) present an accelerated divergence of the boundary results.547

548

For the airfoil’s examples (Figures 29(a) and 29(b)) a stable convergence is549

achieved for the first 20 iterations. After the 20th iteration the results have a550
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slower tendency of divergence. In contrast, the square example (Figure 29(c))551

presents a stable convergence through the 40 iterations. This indicates that552

examples with strong geometric changes have a tendency of convergence.553

554

5 Conclusions and Future Work555

This manuscript presents the simplification and evaluation of a fluid dynamics556

problem using the Boundary Element Method. The solution of the singular557

boundary and surface integrals are performed with the source node displace-558

ment method and direct analytic evaluation, respectively, as the contribution.559

To the best of our knowledge, these singularity avoiding methods have not been560

implemented for the evaluation of such integrals in the specific fluid dynamics561

field. Thus, it provides a simplified alternative to computing singular integrals.562

The advantages of the analytic approaches are their precision and low com-563

putational costs. In addition, the analytic methods provide insight about the564

concept of singular integrals in BEM formulation.565

566

As can be seen in sections 4.1 and 4.3, the implemented source node displace-567

ment method can approximate the singular boundary integrals. The results of568

these integrals for Green’s function F are exact with the results from [1]. In569

comparison, there is a discrepancy with the results of Green’s function G. How-570

ever, we are unaware of any semantic that justifies the difference between the571

null result obtained from [1] and our result. In addition, it can be seen that the572

result for the singular integral of the Green function G with the source node573

displacement method is identical to the analytic integral result obtained without574

avoiding the singularity. As a consequence, it can be said that the boundary575

integrals are correctly computed for a canonical element with the source node576

displacement method.577

578

Our implementation predicts laminar flow characteristics around some sub-579
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merged objects. It retains the order of the magnitude of the free-flow velocity580

and to some degree approximates the expected flow direction. Differences can581

be found in the flow region around the submerged objects where convective582

acceleration occurs. As well as difficulties in the convergence of the boundary583

conditions for other objects. These differences may occur due to factors not584

assessed which do not correspond to the goal of this manuscript. Factors such585

as a not sufficient discretization, the geometry of the submerged objects, and586

the order of the elements used. Even though these uncertainties arise, the ap-587

proximations of the singular integrals can be computed by the means presented588

and are compared by a different method other than the numerical simulation589

examples. As a consequence, it can be said that the goal of the article is ac-590

complished, in which the singular integrals are computed and tested by means591

of the presented methods.592

593

Our simulation was developed for free flow cases with constant free flow594

velocity. Despite this fact, the exposed methodology and solution of singular595

integrals can be applied to different examples in which, for example, the free596

flow velocity fluctuates.597

598

Since we do not focus our attention in some aspects of the BEM, there599

is a possibility for future work to improve the convergence of the boundary600

solution, extend the integration schemes to higher order elements, assess the601

necessary interior to be discretized, as well as extend the implemented methods602

for avoiding the singularities in other scientific fields.603
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Sergey B. Kirpichev, Matthew Rocklin, AMiT Kumar, Sergiu Ivanov, Ja-651

son K. Moore, Sartaj Singh, Thilina Rathnayake, Sean Vig, Brian E.652

Granger, Richard P. Muller, Francesco Bonazzi, Harsh Gupta, Shivam Vats,653

Fredrik Johansson, Fabian Pedregosa, Matthew J. Curry, Andy R. Terrel,654
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